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@ Mars Climate Lidar - Overview

Ongoing Work:
* Are studying a Mars orbital atmospheric lidar

Motivations:
* MEPAG reports
* Climate emphasis in Mars chapter of 2011
Planetary Decadal

» Science measurement needs to allow more

Assumptions:

accurate EDL (landings) for robots & people
» Mission & spacecraft allow measurements from

~400 km near-polar orbit

Objectives:
» Target continuous global measurements of: Approach:
- Wind profiles (in lidar line-of-sight) - for  Adapt direct detection lidar techniques & new
improving landings & for climate science high efficiency laser technologies
- Dust and ice backscatter profiles » Stay compatible with a medium size orbiter

- CO2 gas column abundance (surf press.) * Target readiness for 2018/2020 launches.
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@ Why Global Wind Measurements ?

L =270°
Wind profiles will provide (01 E T
crucial new information

* Winds regulate the transfer of
gases and heat throughout the
atmosphere, raise dust at the
surface, and are a primary player
in all surface-atmosphere
interactions
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* Measured wind profiles provide

sensitive input and needed

validation for improving current

GCM models 10

I
|

mrrr i
il

* Winds are of critical importance

for the safety and precision of _ , _ _
Calculated "gradient winds" (m/sec) for season Ls=270, inferred from latitude

spacecraft entry, descent and gradients of temperature. Presently, this is the best way to estimate global-scale

landing (EDL) on Mars winds from observations. They describe in a very broad sense the general modeled
winds from GCMs. Shortcoming are these require lots of assumptions, don't work
near the equator, only give zonal (east-west) winds, don't include weather or any
local phenomena, and are not very precise.

Latitude

10-11-12 Mars Climate Lidar - Presentation at Planetary Instrument Workshop Abshire, Smith, Riris - 3



Why these measurements together ?

TES Dust Opacity (1075 cm™'), Scale: T =0 (purple) - 0.5 (red)
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Simultaneous measurement of
wind, gas abundance and
aerosol profiles maximizes
science return
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* Dust aerosols interact strongly with

IR radiation, driving atmospheric N E 1
motions at all spatial scales. e ' ' ' 11 | E
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TES Water-Ice Opacity (825 cm™'), Scale: T =0 (purple) - 0.15 (red)
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* Water ice clouds play an important
role in the water cycle altering the
global transport and distribution of
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TES Water Vapor Column, Scale: 0 (purple) - 35 pr-um (red)
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* LIDAR observations over a range of :z v d 1 : —
local times will provide a self- I '
consistent data set enabling new o lll'.
understanding of many important 90 SUL._ o EIH S T S W U W

120 180 240 300 0 60 120 180 240 300 0 60 120 180 240. (;00 0 60
processes including circulation, =

waves, radiative balance, and the Summary of of current climatology as retrieved from TES.
transport, sources and sinks of trace Dust (top), atmospheric temperatures (2nd panel), water ice clouds (3rd panel) and
water vapor (bottom) are all interrelated. Dust warms the atmosphere. Dust and
water ice clouds are anti-correlated. Water ice clouds and water vapor are related.
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Mola/MGS Cloud Measurements
(Neumann et al., JGR, 2003)
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Figure 9. Circumpolar belt of channel 1 clouds observed
on 11 March 1999. In this profile segment nearly 1/3 of
MOLA shots trigger on clouds. Two unusually strong
channel 1 retums occur at 160—-200 m above ground.
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Figure 11. Histograms of reflective clouds versus solar

zenith angle. Most clouds occur at night or twilight

4 Equatorial clouds are almost equally distributed day and

night.
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Figure 5. Percentage of reflective cloud counts in 2° x 2° bins, as a function of the solar longitude L,
and latitude. The cloud frequency as a fraction of nadir-looking shots is normalized by laser energy. The
nearly constant rate of false returns thereby appears to increase as the laser energy declines during Year
Two. The inset shows the limited extent of coverage during the Science Phasing Orbits (SPO). The curves
show latitude of the terminator along the MOLA ground track, offset from the arctic circles due to the ~2
pm Sun-synchronous orbit. The arrow shows the time at which threshold of channel 1 was raised to
mitigate saturation of ground retums; the background resulting from false triggers was thereby reduced.
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Figure 6. Frequency of absorptive clouds with latitude and season. Nadir frames with average reflectivity-
transmission product <0.02, or more than two shots that retum no ranges, indicate significant opacity. The

B Absorptive Clouds: B
Distribution
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Lidar Measurements of the Mars Atmosphere from the Surface on
the Phoenix Lander (J. A. Whiteway et al., 2008, 2010, 2011)
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Fig. 1. (a) Lidar backscatter signal recorded with Analog (mV) and Photon Counting (MHz) on Sol 65, 07:11 Local True Solar Time (L,=106"). (b) Derived extinction
coefficient profile for Sol 65 using a lidar ratio of 40. The Analog signal was employed from ground to 2.5 km, and Photon Counting signal from 2.5-20 km. Relative 0
uncertainty is provided for the extinction coefficient.
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Fig. 2. Lidar extinction coefficient profiles for Mars Sols 14, 48, 97 (solid) and at
Muloorina Australia on Nov 20th 05:00 GMT (dashed). The solar longitudes of

PhoenIX lldClI" (Nd:YAG IGSCI“ & ¢ Mars on these dates were L;=84°, 99°, and 122°.
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Fig. 8. Two case studies of lidar cloud measurements on Mars. Each shows the height distribution of backscatter coefficient over a 1 h interval. The colored area is the
Time [min] outline of a cloud that drifted above the landing site.
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Figure 2. The 532 nm lidar signal of GLAS depicted for an entire global orbit from October 6, 2003. The signal scaling is
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Wind Lidar for Earth to be Launched 2014

ESA’s ADM-Aeolus Wind Lidar Mission

Measures Line of
sight winds via lidar \@\

in Earth Orbit

Horizontal
wind e
- ".-'_‘—_'_ =—==——=—o=—= -':'.‘_-. Atmosphere
Wind along i~
laser line-of-sight Earth

7> esa ALADIN T
Atmospheric Laser Doppler Instrument AEOLUS

ALADIN is the only payload of Aeolus.
Its size is dominated by the large afocal
telescope of 1.5 m diameter. 1

It uses diode pumped Nd:YAG laser to ‘ VA
generate UV-light pulses (355 nm) i
emitted to the atmosphere.

Two transmitter laser assemblies (blue) 4 B
and the receiver (yellow) are on the 1
structure below the telescope.

A large radiator (mounted on the
satellite bus) is coupled with heat pipes
to the transmitter lasers.

Star trackers are mounted on ALADIN
¥ structure to give best possible pointing
reference.

Total mass is 480 kg, power 830 W.

European Space Agency
Agence spatiale européenne

.. the.
Wind Lidar Working Group, Miami 6 Feb 2007 Living Planet

ALADIN Lidar for Earth:

* Need high resolution to improve Earth weather models
* Measures Doppler shift of broad Rayleigh scatter from
clean air

=> 355 nm laser
* Laser is power inefficient (~1%) & difficult (UV)
» Backscatter spectrum is varying mix of Mie & Rayleigh
scattering
* All these result in a large complex lidar, needing ~800W
power

Wind lidar for Mars atmosphere
* Measurement requirements aren’t nearly as
demanding
» Mie scattering (fine suspended aerosol
(dust)) dominates (by far)
* Very narrow backscatter spectrum simplifies
receiver
* Allows a smaller, simpler lidar working in
VIS/NIR
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Examples of Airborne Lidar Measured CO2 Line shapes vs Altitude
GSFC CO2 Sounder over SGP ARM Site - August 4, 2009
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Candidate CO2 absorption Regions
For CO2 column density (pressure) measurement

5247 lines
Co2
— Are isolated CO2 lines with
£ 15231 gyjitable strengths to measure
P i Mars column density near [
£ 1533 & 1567 nm
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Mars Climate Lidar - Instrument Diagram

. . Detector for
A Tuning* T 1-€| “ré’ d Signal Processing Pola(?i?esds-(ice)
. unable see i
(off- & on-line) laser diode Electronics backscatter
Fiber Laser 11 pol [ pol
lfi 2-channel
amplifier Doppler Pol B/S
v Interferometer S——
Transmit ¢ + | CO2IPDA
Optics
P Path 1 | | Path 2 Receiver
» Atmospheric backscatter profiles ‘

4

* Dust/ice ratio profiles
* Doppler wind profiles
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Some High Efficiency Lidar components
being developed for Space (most with NASA ESTO support)

DS-DBR laser
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@ Mars Climate Lidar Study - Status

Preferred Mars Mission:
» ~Circular polar orbit ~400 km altitude
* Non-synchronous (variable time of day) orbit

Heritage:
» Well-established direct detection lidar approach
» Similar measurements demonstrated from the
ground (Earth & Mars), aircraft & from orbit

Estimated Capabilities:

Technology Leverage: » Continuous global measurements of atmospheric:
* New laser & detector technologies from NASA ESTO CO2 column abundance (surf pressure): <2 %
& from industry; => (~x10-x15) lower power Backscatter profiles: < 2%, 2 deg latt, 2 km vert

Wind profiles: < 3 m/sec, 2 deg latt, 2 km vert
One Configuration Concept (70 cm diam. tel): Depolar. (ice-dust discr.) profiles < 5%

* Readout resol: ~100 m vertically, 1 Hz rate

Why these measurements ?
* Directly address high priority needs for Mars:

« 2011 Planetary Decadal Survey

« Strategic knowledge gaps in Mars program
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Backup
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